Search results

Search for "aryl halides" in Full Text gives 151 result(s) in Beilstein Journal of Organic Chemistry.

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • functionalization of indoles to 3-substituted indoles Functionalization through direct C–H alkoxycarbonylation The transition-metal-catalyzed carbonylation of aryl halides, triflates, and tosylates with carbon monoxide and an alcohol was first pioneered by Heck and co-workers in 1974 [64][65]. Since then, this
PDF
Album
Review
Published 30 Apr 2024

Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives

  • Nahed Ketata,
  • Linhao Liu,
  • Ridha Ben Salem and
  • Henri Doucet

Beilstein J. Org. Chem. 2024, 20, 427–435, doi:10.3762/bjoc.20.37

Graphical Abstract
  • bases in the presence of Pd(OAc)2 as the catalyst (5 mol %) in DMA at 150 °C. This catalyst precursor is known to efficiently promote the direct coupling of 5-membered ring heteroarenes with aryl halides [25]. Cs2CO3 and K2CO3 proved to be totally inefficient bases, while acetate bases gave the desired
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • . Finally, single electron oxidation of 169 at the anode, followed by rearomatization via proton-transfer forms the alkylated heterocycle 170. As discussed in Scheme 25, the Ni-catalyzed cross-electrophile coupling between redox-active esters and aryl halides requires the addition of a stoichiometric
  • cathode surface restores the Ni0 species 175 giving rise to a new catalytic cycle. Reductive cross-electrophile couplings that incorporate redox-active esters and aryl halides have the potential to simplify the syntheses of drug-like compounds through C(sp3)–C(sp2) bond formation. However, their synthetic
  • -rich (hetero)aryl halides was equally effective (Scheme 36). In addition, the preparation of unnatural amino acids in multigram scale [115], along with the syntheses of complex terpenes [116] and (+)-calcipotriol [117] have showcased the vast synthetic potential and broad applicability of NHPI esters
PDF
Album
Perspective
Published 21 Feb 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • trifluoromethyl groups [20] and the cross-coupling of aryl halides [21]. Like phosphonium salts in general are used as catalysts [22][23], phosphonium salts based on ortho-hydroxy-substituted phosphines received particular attention because of their zwitterionic nature and have been used as catalysts in the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Beyond n-dopants for organic semiconductors: use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides

  • Kan Tang,
  • Megan R. Brown,
  • Chad Risko,
  • Melissa K. Gish,
  • Garry Rumbles,
  • Phuc H. Pham,
  • Oana R. Luca,
  • Stephen Barlow and
  • Seth R. Marder

Beilstein J. Org. Chem. 2023, 19, 1912–1922, doi:10.3762/bjoc.19.142

Graphical Abstract
  • dimers reduce halides that have reduction potentials less cathodic than ca. −2 V vs ferrocenium/ferrocene, especially under UV photoexcitation (using a 365 nm LED). In the case of benzyl halides, the products are bibenzyl derivatives, whereas aryl halides are reduced to the corresponding arenes. The
  • to initiate the coupling of aryl halides and arenes [5]. However, even relatively easily reduced organic halides have sufficiently cathodic reduction potentials (e.g., ca. −1.6 V and −1.8 vs ferrocenium/ferrocene (FeCp2+/0) for diethyl bromomalonate [6] and 4-iodotoluene, see Table 2, respectively
  • aryl halides (RX) and discuss the scope and possible mechanism of these reactions. Results and Discussion Reaction of (Y-DMBI)2 with benzyl bromide We began our investigations of dehalogenation reactions using benzyl bromide (BnBr, 1a), which has a reduction peak potential (Epc) of −1.6 V vs FeCp2+/0
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • , commercially available aryl halides are chlorides [37][38], with potentials for reduction that almost exclusively lie beyond the threshold of monophotonically-excited photoredox catalysts (i.e., more deeply negative than E1/2 = −2.0 V vs SCE). Considering this, state-of-the-art developments have focused on the
  • was mostly limited to electron-poor aryl halides, *Rh-6G• could reach a step further and reductively activate electron-rich aryl bromides such as 4-bromotoluene and 4-bromoanisole, albeit providing low (27% and 25%) yields of the coupled products 4d and 4e, respectively. Building on this work, König
  • aryl halides and trialkylphosphites (14) via a similar conPET mechanism (Figure 7) [47]. Notably, even 4-bromoanisole could be reductively activated and phosphorylated in 58% yield (15b). Reports from Eggins [48], Lund and Eriksen [49] have shown that upon excitation, the radical anions of
PDF
Album
Review
Published 28 Jul 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • alkenylated product 109 (Scheme 21b). Arylation C-2 Arylation Owing to the remarkable role of aromatic C–H arylation reactions in organic synthesis abundant methods have been reported for aromatic C–H arylations using different arylating coupling partners, such as for instance, aryl halides. In 2014, using
  • groups used Pd(OAc)2 as catalyst with 1,10-phenanthroline as ligand. The group of Yu used aryl halides 137 as coupling partner, whereas the group of Tan utilized aryl tosylates 142 as coupling partner (Scheme 26). The Yu group also applied the developed protocol for the synthesis of the drug molecule
PDF
Album
Review
Published 12 Jun 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • thioethers from aryl halides and triflates through palladium catalysis [50][51]. Scheme 10 provides a retrosynthesis of amination in the synthesis of dibenzo[b,f]azepine 45 as an example. Arnold et al. [30] reported an excellent method for the convergent synthesis of variable sized dibenzo-fused heterocycles
  • . Among these, Heck reaction conditions allowed for the coupling of aryl acrylates 50 to aryl halides 48 and 49, followed by intramolecular Pd-catalysed amination or etherification to give C-10 carboxylates of dibenzo[b,f]azepine 55 and dibenz[b,f]oxepine 54 in good yield (Scheme 11). However, no ring
  • precursor 102 and the complementary aldehyde 103. 3.4 Catellani-type reaction The Catellani reaction involves palladium-norbornene cooperative catalysis to functionalise the ortho- and ipso-positions of aryl halides by alkylation, arylation, amination, acylation, thiolation, etc. [63]. Della Ca' et al. [64
PDF
Album
Review
Published 22 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
PDF
Album
Review
Published 24 Apr 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • ) European grapevine moth, c) horse-chestnut leaf miner) involving a key alkyl–alkenyl iron-mediated cross-coupling between a dienol phosphate and an α,ω-difunctionalized Grignard reagent. Cross-coupling of alkyl Grignard reagents with a) alkenyl or b) aryl halides involving EtOMgCl as additive. Total
  • developed an eco-friendlier, and easily scalable iron-catalyzed cross-coupling method between alkyl Grignard reagents and Csp2 (alkenyl or aryl) organic halides [31]. By combining a catalytic charge of FeCl3 with alkoxide magnesium salts such as EtOMgCl in THF, complete conversion of the alkenyl/aryl
  • halides was observed and the cross-coupling products were afforded in good to excellent yields (Scheme 5). Moreover, this reaction can also be carried out at the gram scale (up to 50 mmol for alkyl–alkenyl coupling reactions, up to 10 mmol for alkyl–aryl couplings). Alkoxide salts, such as EtOMgCl, are
PDF
Album
Perspective
Published 14 Feb 2023

An alternative C–P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids

  • Stephen J. I. Shearan,
  • Enrico Andreoli and
  • Marco Taddei

Beilstein J. Org. Chem. 2022, 18, 1518–1523, doi:10.3762/bjoc.18.160

Graphical Abstract
  • aryl halides and trialkyl phosphites [23]. Some of the most studied C–P coupling reactions involving aryl substrates are those employing catalysts, which are required in order to lower the energy barrier of the reaction and overcome the poor reactivity between aryl halides and trialkyl phosphites [24
PDF
Album
Supp Info
Letter
Published 07 Nov 2022

Dissecting Mechanochemistry III

  • Lars Borchardt and
  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1454–1456, doi:10.3762/bjoc.18.150

Graphical Abstract
  • halides as substrates in multiple reactions. For instance, within this Thematic Issue, the synthetic relevance of aryl halides was evidenced during the development of a protocol for the solid-state palladium-catalyzed borylation reported by Kubota, Ito, and co-workers (Scheme 2) [6]. Moreover, Štrbac and
  • . Mechanochemical palladium-catalyzed borylation protocol of aryl halides. 1,2-Debromination of polycyclic imides, followed by in situ trapping of the dienophile by several dienes. Synthesis of g-h-PCN from sodium phosphide and trichloroheptazine mediated by mechanochemistry. Mechanochemical intra- and
PDF
Album
Editorial
Published 12 Oct 2022

Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor

  • Wei-Hsin Hsu,
  • Susanne Reischauer,
  • Peter H. Seeberger,
  • Bartholomäus Pieber and
  • Dario Cambié

Beilstein J. Org. Chem. 2022, 18, 1123–1130, doi:10.3762/bjoc.18.115

Graphical Abstract
  • (catalyst) separation in one step. The use of a packed bed simplifies the translation of optimized batch reaction conditions to continuous flow, as the only components present in the reaction mixture are the substrate and a base. The metallaphotoredox cross-coupling of sulfinates with aryl halides was used
  • light-mediated carbon–heteroatom cross-couplings of sodium sulfinates, carboxylic acids and sulphonamides with aryl halides (Figure 2) [28]. Although recyclable, batch reactions are characterized by long reaction times (24 h). Here, we present a detailed investigation of a continuous-flow strategy for
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2022

Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using N-halosuccinimides

  • Dharmendra Das,
  • Akhil A. Bhosle,
  • Amrita Chatterjee and
  • Mainak Banerjee

Beilstein J. Org. Chem. 2022, 18, 999–1008, doi:10.3762/bjoc.18.100

Graphical Abstract
  • requires the use of a solid acid catalyst [52], apart from the use of high-cost, high-end milling equipment which limits to laboratory scale only. Therefore, developing an operationally simple, environmentally benign protocol, potentially useful for the batch-scale synthesis of aryl halides is highly
  • reaction time, and mild reaction conditions are a few noticeable merits of this environmentally sustainable mechanochemical protocol. Keywords: automated grinding; chemoselectivity; mechanochemistry; N-bromosuccinimide; PEG-400; regioselectivity; stoichiometry-controlled halogenation; Introduction Aryl
  • halides are valuable compounds with potent bioactivities [1][2][3][4][5] (Figure 1) and are utilized as crucial precursors for various metal-catalyzed cross-coupling reactions [6][7][8][9]. They are frequently used as synthetic intermediates in several value-added syntheses of natural products
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2022

Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry

  • Koji Kubota,
  • Emiru Baba,
  • Tamae Seo,
  • Tatsuo Ishiyama and
  • Hajime Ito

Beilstein J. Org. Chem. 2022, 18, 855–862, doi:10.3762/bjoc.18.86

Graphical Abstract
  • , Japan 10.3762/bjoc.18.86 Abstract This study describes the solid-state palladium-catalyzed cross-coupling between aryl halides and bis(pinacolato)diboron using ball milling. The reactions were completed within 10 min for most aryl halides to afford a variety of synthetically useful arylboronates in
  • organic materials, typically through Suzuki–Miyaura coupling [1][2][3][4][5][6][7]. The palladium-catalyzed boryl substitution of aryl halides with boron reagents, termed Miyaura–Ishiyama borylation, is an efficient method for synthesizing arylboronates with high functional group compatibility [8][9][10
  • ][11][12][13][14]. To date, many palladium-based catalytic systems in solution for the borylation of aryl halides have been reported [8][9][10][11][12][13][14]. However, these solution-based reactions usually require long reaction times and significant amounts of dry and degassed organic solvents
PDF
Album
Supp Info
Letter
Published 18 Jul 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • , recyclable, and selective for the coupling between aryl halides and phenylacetylene in PEG as the solvent (Scheme 22). The effect of various reaction parameters such as solvent, base, temperature, and catalyst loading was assessed by the model reaction between bromobenzene and phenylacetylene. Optimization
  • studies revealed PEG-200 and K3PO4 as suitable solvent and base, respectively. Aryl halides with electron-donating and electron-withdrawing groups afforded the corresponding products in good yields with 0.15 mmol of catalyst in PEG at 60 °C. A three-component coupling of alkyne with a heterogeneous
  • (Scheme 25) [38]. The coupling products by reaction of phenylacetylene and various aryl halides were obtained in moderate to good yields in the presence of this green catalyst with 4 equivalents of KOH as the base in DMSO at 140 °C. Without any decrease in the catalytic activity, the catalyst could be
PDF
Album
Review
Published 03 Mar 2022

Chemoselective N-acylation of indoles using thioesters as acyl source

  • Tianri Du,
  • Xiangmu Wei,
  • Honghong Xu,
  • Xin Zhang,
  • Ruiru Fang,
  • Zheng Yuan,
  • Zhi Liang and
  • Yahui Li

Beilstein J. Org. Chem. 2022, 18, 89–94, doi:10.3762/bjoc.18.9

Graphical Abstract
  • transthioesterification of aryl halides for the synthesis of thioethers and thioesters [17] (Scheme 1, C). In addition, we also used this reagent to trap alkylcopper(I) intermediates and to form C−S bonds [18]. To the best of our knowledge, thioesters have not been developed as indole N-amidation reagent. Based on our
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2022

Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group

  • Chuanhua Qu,
  • Run Huang,
  • Yong Li,
  • Tong Liu,
  • Yuan Chen and
  • Guiting Song

Beilstein J. Org. Chem. 2021, 17, 2822–2831, doi:10.3762/bjoc.17.193

Graphical Abstract
  • sulfones is a valuable and appealing task in synthetic chemistry. Traditionally, diarylmethyl sulfones are synthesized by transition-metal-catalyzed deoxy C–S bond-coupling reaction of sodium arylsulfinates with diarylmethanols [11], C–H functionalization of alkyl sulfones with aryl halides [12], and via a
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • -catalyzed coupling reactions of terminal alkynes was published by Hwang and co-worker. In 2012, they [65] achieved a photoinitiated Sonogashira reaction using aryl halides (bromides and iodides) 20 and aryl- or alkylacetylenes 19. In control experiments, the replacement of the copper salt with palladium
  • Bissember [91]. In 2013, Peters’ group [86] established the copper-catalyzed C–S cross-coupling between thiols and aryl halides. The mechanistic studies revealed that the reaction runs with the inexpensive precatalyst (CuI) and no ligand co-additive is necessary. In 2014, the same group [85] reported the
  • with aryl iodides to generate intermediate D, which then undergoes reductive elimination to generate the desired products (Scheme 23). In 2017, Evano’s group [55] established a photoinduced, copper-catalyzed C–C cross-coupling of aryl halides, and heteroarenes. The cyclization of N-allyl-o-iodoanilines
PDF
Album
Review
Published 12 Oct 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • , MacMillan and co-workers demonstrated an inspiring C(sp3)‒H arylation of dimethylaniline (1a) with a variety of aryl halides using the photoredox nickel catalysis [53]. Here, the combination of the iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 and the commercially available nickel catalyst NiCl2·glyme
  • that the oxidative addition of the nickel(0) species 10-VII to aryl bromide 3 and subsequent steps to produce nickel(III) intermediate 10-IX could not be ruled out. The König group discovered that the arylation of α-amino C(sp3)–H bonds could be realized with aryl halides using mesoporous graphitic
PDF
Album
Review
Published 31 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • with 5-iodoindole (182) in the presence of thiourea and a recyclable CuO nanoparticle catalyst (Scheme 26) [116]. This heterogeneous catalysis strategy bypasses the use of unpleasant aryl thiols, which are generally coupled with other aryl halides in the presence of transition-metal catalysts for
PDF
Album
Review
Published 19 Aug 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • reductive elimination occurs in the presence of base to achieve the desired product 119 (Scheme 36) [59]. Direct arylation of disubstituted triazoles 123 with aryl halides 124 using a Pd/C catalyst under solvent-free conditions to give fully decorated triazoles 125 was reported by Farinola et al. Different
PDF
Album
Review
Published 13 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • additive to give corresponding thiophene radical 76 and aniline radical cation under irradiation with light. Then, 76 reacted with 73, giving rise to corresponding radical 77. Finally, product 74 was given via hydrogen atom transfer (Scheme 26). In contrast to (hetero)aryl halides with indispensable
  • medicinal value at ambient temperature, which has a wide range of substrates, including various (hetero)aryl halides and substituted oxindoles. In 2019, Gilmour and colleagues [12] transformed the classical Stetter reaction into a radical approach, solving the long-standing problem of chemical selectivity
  • between radicals was carried out, affording thioether derivative 132 (Scheme 46). It has been proved by UV–vis spectroscopy and TDDFT calculations that the EDA complex was formed between an electron-rich mercaptan anion and electron-deficient aryl halides. Most importantly, this approach can be
PDF
Album
Review
Published 06 Apr 2021

Novel library synthesis of 3,4-disubstituted pyridin-2(1H)-ones via cleavage of pyridine-2-oxy-7-azabenzotriazole ethers under ionic hydrogenation conditions at room temperature

  • Romain Pierre,
  • Anne Brethon,
  • Sylvain A. Jacques,
  • Aurélie Blond,
  • Sandrine Chambon,
  • Sandrine Talano,
  • Catherine Raffin,
  • Branislav Musicki,
  • Claire Bouix-Peter,
  • Loic Tomas,
  • Gilles Ouvry,
  • Rémy Morgentin,
  • Laurent F. Hennequin and
  • Craig S. Harris

Beilstein J. Org. Chem. 2021, 17, 156–165, doi:10.3762/bjoc.17.16

Graphical Abstract
  • . Finally, we turned out attention to transition metal-catalyzed formation of phenols from aryl halides [5]. After another round of screening, we successfully applied palladium-catalyzed conditions discovered by the Buchwald group [6], using KOH as the nucleophile and X-Phos as the ligand, to afford 7 in 83
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021
Other Beilstein-Institut Open Science Activities